Twitter Feed
Transformation Infrastructure
Hybrid IT enables a composable infrastructure which describes a framework whose physical compute, storage, and network fabric resources are treated as services. Resources are logically pooled so that administrators need to physically configure hardware to support a specific software application, which describes the function of a composable architecture. This type of transformative infrastructure is foundational…
Essential Characteristics of Cloud Computing as Digital Transformation
A survey of 2,000 executives conducted by Cognizant in 2016 identified the top five ways digital transformations generate value: Accelerating speed to market Strengthening competitive positioning Boosting revenue growth Raising employee productivity Expanding the ability to acquire, engage, and retain customers Digital transformation is also a cultural change. Cloud Computing as Digital Transformation Since cloud…
Embrace Transformation
From a business perspective, differentiating business processes and quality customer service are central to overall success. Business leaders must therefore clearly identify and measure how information technology contributes to the value of every key business process. They must also know how to most cost effectively use IT when the task is merely the management of…
Computer Vision Advances Zero-Defect Manufacturing
by Kevin L. Jackson Electronics manufacturers operate in a challenging environment. It’s hard enough to keep up with the ever-accelerating rate of change in the industry. Now customers want increasingly specialized product variations in less time and of higher quality. Meeting this demand for increased product variation can seriously impact the bottom line. Such variability increases…
Real-Time Analytics Power the Roadway of the Future
By Kevin L. Jackson The complexities of citywide traffic are pushing the limits of existing transportation management systems. Outdated infrastructure is based on proprietary, single-purpose subsystems, making it costly to acquire, operate, and maintain. And current roadways are simply not prepared for the future of autonomous vehicles. Enter the SPaT Challenge, an initiative encouraging cities and…
Thriving on the Edge: Developing CSP Edge Computing Strategy
Communications Service Providers (CSPs) are facing significant business model challenges. Referred to generally as edge computing, the possibilities introduced by the blending of 5G networks and distributed cloud computing technologies are redefining how CSPs operate, partner, and drive revenue. A new Ericsson Digital whitepaper entitled, “Edge computing and deployment strategies for communication service providers,” addresses these challenges…
SourceConnecte! Marketplace With A Mission
Earlier this year, GC GlobalNet launched a new breed of B2B e-commerce sites. Curated by Kevin L. Jackson, SourceConnecte (with an “e”) went live with three strategic goals in mind: Efficiently leverage modern social media technologies to facilitate value-based interactions between enterprise buyers and vetted suppliers; Establish a protected interactive environment capable of supporting high-value B2B e-commerce negotiations…
Potential vs. Reality: Is Edge Computing Real?
Edge computing provides compute, storage, and networking resources close to devices generating traffic. Its benefits are based on an ability to provide new services capable of meeting stringent operational requirements by minimizing both data latency and the need for bandwidth. Based on Google trend data, searches for the term has also grown substantially over the…
Enabling Digital Transformation
Digital transformation integrates technology into all areas of an organization’s business or mission. Its fundamental purpose is to create and deliver innovative and industry-changing products and services to a global customer base. This outcome requires the seamless two-way flow of data and information between internal business processes and external processes that interact with customers, business…
The ThinkShield Story Part 1: The Challenge
The cybersecurity challenge seems to be growing daily. Threats are becoming more sophisticated, and attacks are becoming more destructive while the corporate world’s response seems to resemble a deer in headlights. Recent examples of this dangerous state of affairs include[1]: A data breach of a US Customs and Border Protection surveillance contractor that led to…
- “Cloudbursting” to support cyclic data processing requirements
- Establishing a cloud-based collaboration environment in order to coordinate firefighting resources during a wildfire
- Virtually binding shipboard IT infrastructures in order to create a battlegroup infrastructure-as-a-service platform
- Virtually binding land vehicle based servers and storage resources into a battlefield data center
- Dynamic provisioning of virtual cloud-based servers in order to automate exploitation and dissemination of unmanned air vehicle (UAV) streaming video feeds
- This discussion panel will explore how defense, homeland security and law enforcement organizations are looking to leverage this new and exciting IT capability.
( Thank you. If you enjoyed this article, get free updates by email or RSS – KLJ )
3 Comments
Leave a Comment
Cloud Computing
- CPUcoin Expands CPU/GPU Power Sharing with Cudo Ventures Enterprise Network Partnership
- CPUcoin Expands CPU/GPU Power Sharing with Cudo Ventures Enterprise Network Partnership
- Route1 Announces Q2 2019 Financial Results
- CPUcoin Expands CPU/GPU Power Sharing with Cudo Ventures Enterprise Network Partnership
- ChannelAdvisor to Present at the D.A. Davidson 18th Annual Technology Conference
Cybersecurity
- Route1 Announces Q2 2019 Financial Results
- FIRST US BANCSHARES, INC. DECLARES CASH DIVIDEND
- Business Continuity Management Planning Solution Market is Expected to Grow ~ US$ 1.6 Bn by the end of 2029 - PMR
- Atos delivers Quantum-Learning-as-a-Service to Xofia to enable artificial intelligence solutions
- New Ares IoT Botnet discovered on Android OS based Set-Top Boxes
I do not believe that the Army is ready to rely on a cloud computing architecture at the tactical level. I am concerned that Army leadership may not have a clear picture of the challenges facing the field that must be overcome before we can fundamentally change our computing construct.
First, the bandwidth of a tactical network cannot support SaaS, PaaS or other cloud computing constructs. If every application is online, how much of that bandwidth is consumed by overhead? Tactical units get less than 80Kbps per device. This is barely enough to support a radio-quality VOIP call.
Second, even if the bandwidth was sufficient, there are severe latency problems with SATCOM that may also be prohibitive. While industry has made amazing strides in data compression and waveform utilization, one fact cannot be changed. Unfortunately, we cannot alter the speed of light. Imagine trying to edit a document on a server three satellite hops away. Every click and keystroke would take three to four seconds to appear.
Third, the availability and redundancy of the network is not sufficient to support combat operations with cloud-based resources. In monitoring the tactical network south of Baghdad, I can count on one hand the number of times when there were no network outages in a given twelve hour period. Regardless of the cause, the key concern in relation to cloud computing is: How can an end user be productive when they are disconnected from their cloud-based resources? In some cases, being disconnected even for a minute during critical operations can mean life or death to Troops in contact or those requesting medical evacuation.
There are a few ways to address these issues in order to make the promises of cloud computing work over a disadvantaged and ever-changing network. One construct would be to decrease our reliability on SATCOM. Wireless backbones provided by commercial line-of-sight radios (802.16, OFDM, microwave and variants) provide a more stable terrestrial network that eliminates latency and increases availability. If a unit could establish a redundant line-of sight mesh with a node connected to a high-speed fiber connection, it could receive the bandwidth necessary for cloud computing.
Another method is to get the cloud resources closer to the end user. In this model, wherever there is a SATCOM node, there exists server capacity to provide services over a wired or wireless LAN. Frequently used applications and products could be dynamically cached, so they can be accessed even when the WAN is unavailable. The servers keep these up to date by synchronization with hosting servers and peers. Meanwhile, the user pulls resources across the LAN instead of the SATCOM link. Unfortunately, the Army seems to be going the other way with its ‘Global Network Enterprise Construct’. In this vision of the future network, IT services would be consolidated farther away from the tactical user in order to best standardize and control services.
I am a firm believer in promises of cloud computing. I have built virtual servers in tactical units and have seen the cost-benefit first hand. I have provided entirely web based services for everything from intelligence fusion to real-time collaboration. Unfortunately, I also observed that these applications became less accessible to units with poor connectivity. It is my sincere hope that the leadership in the Army will understand the challenges faced by lower echelon units as we move forward towards the adoption of cloud computing. If the Army can leverage the appropriate technologies at the right levels, then cloud computing has the potential to provide consistent, low-cost, interoperable, and sustainable computing services to the Warfighter of the future.
Major Trey Blacklock
Information Systems Management Officer
United States Army
The views expressed in this BLOG are those of the author and do not reflect the official policy or position of the Department Of the Army, Department of Defense or the U.S. Government
Major Blacklock,
Thank you for your excellent comments. Your concerns are more than valid for reach back, or "enterprise" cloud computing construct. That is more in line with what DISA is providing with Rapid Access Computing Environment (RACE). "Tactical" cloud computing, on the other hand, uses cloud computing techniques and approaches in order to increase the efficiency and effectiveness of more "local" compute and storage resources (think in-theater). As you allude to, this is more along the lines of linking together the compute and storage resources of five Humvees within UHF range of each other. Another concept would give the fleet commander the ability to link a battlegroup's compute and storage resources together into a single supercomputer in order to run multiple strike package simulations. I think we're in agreement.
Mr. Jackson,
I agree with you that computing resources need to be closer to the unit and with the concept that the processing and storage can be distributed. Unfortunately, the CIO/G6 and NETCOM strategic vision is to move them farther away and consolidate services in "Army Processing Centers" which will not be in theater at all. At this time they are still planning on equipping the APCs with conventional server farms instead of the virtual server architecture advocated by DISA's RACE pilot. APC White Paper
I am afraid that the Army is going in two different directions that are technologically inconsistent. I was hoping that your panel might consider this in your defense application discussions.
MAJ Trey Blacklock
Information Systems Management Officer
United States Army
The views expressed in this BLOG are those of the author and do not reflect the official policy or position of the Department Of the Army, Department of Defense or the U.S. Government