Federal Cloud Computing Heating Up !

One AWESOME Week of Cloud Computing

By G C Network | June 11, 2010

We just finished up five AWESOME days of cloud computing training with USAREUR in Schwetzingen, Germany ! CHECK IT OUT !! Create your own video slideshow at animoto.com. Sure we…

NGA Exploring “Community Cloud” With NCOIC

By G C Network | June 7, 2010

The National Geospatial-Intelligence Agency (NGA) is looking to leverage industry expertise through collaboration with the Network Centic Operations Industry Consortium (NCOIC). NGA provides timely, relevant and accurate geospatial intelligence in…

DoD, NASA and GSA Address Secure Cloud Computing

By G C Network | May 29, 2010

On Thursday, May 26th, the Federal Executive Forum featured three important Federal cloud computing leaders: David McClure- Associate Administrator, GSA Office of Citizen Services and Communications Col. Kevin Foster- Office of…

Cloud Computing Day at DoDIIS

By G C Network | May 25, 2010

I’m declaring Monday, May 24th, as Cloud Computing Day at DoDIIS.  Lieutenant General Richard Zahner, Army Deputy Chief of Staff, G2, seemed to get things going with his video that…

Vivek Kundra – State of Public Sector Cloud Computing

By G C Network | May 25, 2010

Last week Federal Chief Information Officer Vivek Kundra release his report on the “State of Public Sector Cloud Computing”. The report not only details Federal budget guidance issued to agencies…

Cloud Computing at DoDIIS

By G C Network | May 18, 2010

Next week in Phoenix, AZ, the Defense Intelligence Agency will host the 2010 Department of Defense Intelligence Information Systems (DoDIIS) Worldwide Conference. The theme of this event is “Mission Powered…

Open Group Publishes Guidelines on Cloud Computing ROI

By G C Network | April 29, 2010

In an important industry contribution, The Open Group has published a white paper on how to build and measure cloud computing return on investment (ROI). Produced by the Cloud Business…

The Army’s iPhone Story

By G C Network | April 15, 2010

Sandra Erwin of National Defense magazine just published an excellent article on the Army’s foray into developing soldier-friendly smartphone applications.  Giving credit to Army CIO Lt. Gen, Jeffrey Sorenson and…

Vivek Kundra Steps Up to Cloud Computing’s Next Challenge

By G C Network | April 11, 2010

” [C]loud customers must be able to easily store, access, and process data across multiple clouds; weave together a mesh of different services to meet their needs; and have a…

Cloud Computing’s Next Challenge

By G C Network | March 26, 2010

Earlier this month, Melvin Greer and I teamed up on a Military Information Technology piece. Melvin is a senior research engineer and cloud computing chief architect at Lockheed Martin, and…

As fellow blogger Reuven Cohen mentions in his post, Federal cloud computing is indeed heating up:

  • Vivek Kundra held a US Federal Government Cloud Computing Summit yesterday
  • The Federal CIO Council is officially studying effective uses of cloud computing
  • According to Network World, an INPUT study places Federal spend on cloud services at $277M in 2008 growing to $793M by 2013
  • Patrick Stingley has been named as the CTO, Federal Cloud for GSA
  • NIST has reveled their draft definition of cloud computing (see below)

—————————————————————————————-

Draft NIST Working Definition of Cloud Computing

4-24-09

Peter Mell and Tim Grance – National Institute of Standards and Technology, Information Technology Laboratory

Note 1: Cloud computing is still an evolving paradigm. Its definitions, use cases, underlying technologies, issues, risks, and benefits will be refined in a spirited debate by the public and private sectors. These definitions, attributes, and characteristics will evolve and change over time.

Note 2: The cloud computing industry represents a large ecosystem of many models, vendors, and market niches. This definition attempts to encompass all of the various cloud approaches.

Definition of Cloud Computing:

Cloud computing is a pay-per-use model for enabling available, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, services) that can be rapidly provisioned and released with minimal management effort or service provider interaction. This cloud model promotes availability and is comprised of five key characteristics, three delivery models, and four deployment models.

Key Characteristics:

  • On-demand self-service. A consumer can unilaterally provision computing capabilities, such as server time and network storage, as needed without requiring human interaction with each service’s provider.
  • Ubiquitous network access. Capabilities are available over the network and accessed through standard mechanisms that promote use by heterogeneous thin or thick client platforms (e.g., mobile phones, laptops, and PDAs).
  • Location independent resource pooling. The provider’s computing resources are pooled to serve all consumers using a multi-tenant model, with different physical and virtual resources dynamically assigned and reassigned according to consumer demand. The customer generally has no control or knowledge over the exact location of the provided resources. Examples of resources include storage, processing, memory, network bandwidth, and virtual machines.
  • Rapid elasticity. Capabilities can be rapidly and elastically provisioned to quickly scale up and rapidly released to quickly scale down. To the consumer, the capabilities available for rent often appear to be infinite and can be purchased in any quantity at any time.
  • Pay per use. Capabilities are charged using a metered, fee-for-service, or advertising based billing model to promote optimization of resource use. Examples are measuring the storage, bandwidth, and computing resources consumed and charging for the number of active user accounts per month. Clouds within an organization accrue cost between business units and may or may not use actual currency.

Note: Cloud software takes full advantage of the cloud paradigm by being service oriented with a focus on statelessness, low coupling, modularity, and semantic interoperability.

Delivery Models:

  • Cloud Software as a Service (SaaS). The capability provided to the consumer is to use the provider’s applications running on a cloud infrastructure and accessible from various client devices through a thin client interface such as a Web browser (e.g., web-based email). The consumer does not manage or control the underlying cloud infrastructure, network, servers, operating systems, storage, or even individual application capabilities, with the possible exception of limited user-specific application configuration settings.
  • Cloud Platform as a Service (PaaS). The capability provided to the consumer is to deploy onto the cloud infrastructure consumer-created applications using programming languages and tools supported by the provider (e.g., java, python, .Net). The consumer does not manage or control the underlying cloud infrastructure, network, servers, operating systems, or storage, but the consumer has control over the deployed applications and possibly application hosting environment configurations.
  • Cloud Infrastructure as a Service (IaaS). The capability provided to the consumer is to rent processing, storage, networks, and other fundamental computing resources where the consumer is able to deploy and run arbitrary software, which can include operating systems and applications. The consumer does not manage or control the underlying cloud infrastructure but has control over operating systems, storage, deployed applications, and possibly select networking components (e.g., firewalls, load balancers).

Deployment Models:

  • Private cloud. The cloud infrastructure is owned or leased by a single organization and is operated solely for that organization.
  • Community cloud. The cloud infrastructure is shared by several organizations and supports a specific community that has shared concerns (e.g., mission, security requirements, policy, and compliance considerations).
  • Public cloud. The cloud infrastructure is owned by an organization selling cloud services to the general public or to a large industry group.
  • Hybrid cloud. The cloud infrastructure is a composition of two or more clouds (internal, community, or public) that remain unique entities but are bound together by standardized or proprietary technology that enables data and application portability (e.g., cloud bursting).

Each deployment model instance has one of two types: internal or external. Internal clouds reside within an organizations network security perimeter and external clouds reside outside the same perimeter.

Follow me at https://Twitter.com/Kevin_Jackson

G C Network