New Approaches for New Big Data Insights

The Endpoint Imperative: Global Security Compliance. Are you ready?

By G C Network | November 12, 2017

    China has its Cybersecurity Law. Next May, the General Data Protection Regulation – or GDPR –goes into effect for the European Union. Research shows most organizations just aren’t…

The Endpoint Imperative: IT Spending: Setting Priorities in a Volatile World

By G C Network | November 5, 2017

  Fast-evolving trends are changing the way IT thinks about security. To stay secure and productive, IT operations must excel at the fundamentals: PC refreshes for security, and optimizing end-user…

Top 1000 Tech Bloggers

By G C Network | October 24, 2017

The Rise “Top 1000 Tech Bloggers” leaderboard recognizes the most inspiring Tech journalists and bloggers active on social media. They use Klout scores (50%) and the blogger’s twitter conversations on…

IBM – The Power of Cloud Brokerage

By G C Network | October 14, 2017

Hybrid cloud adoption is now mainstream and you are making decisions every day about how to transform application and infrastructure architectures, service delivery, DevOps, production operations and governance. With Cloud…

More SMB Love Needed

By G C Network | September 29, 2017

    In a recent post, titled “10 Surprising Facts About Cloud Computing and What It Really Is”, Zac Johnson highlighted some interesting facts about cloud computing in the SMB…

ATMs Are IT Too!

By G C Network | September 5, 2017

That world of homogenous IT technology managed entirely by the internal IT organization has long disappeared.  Operations today require efficient and global management of technologically heterogeneous environments. The challenges and…

Digital Transformation Asset Management

By G C Network | August 30, 2017

Today’s businesses run in the virtual world. From virtual machines to chatbots to Bitcoin, physical has become last century’s modus operandi.  Dealing with this type of change in business even…

The Game of Clouds 2017

By G C Network | July 30, 2017

The AWS Marketplace is growing at breakneck speed, with 40% more listings than last year! This and more insights were revealed when CloudEndure used their custom tool to quickly scan the…

Managing Your Hybrid Cloud

By G C Network | July 14, 2017

Photo credit: Shutterstock   Runaway cloud computing cost may be causing an information technology industry crisis.  Expanding requirements, extended transition schedules and misleading marketplace hype have made “Transformation” a dirty word. …

American Airlines Adopts Public Cloud Computing

By G C Network | June 30, 2017

Did you know that the reservations systems of the biggest carriers mostly run on a specialized IBM operating system known as Transaction Processing Facility (TPF). Designed by IBM in the…

by Melvin Greer

Business Intelligence has matured as a core competency necessary to sustain competitive advantage. Organizations of every size and industry are generating valuable data with each interaction, and that data can be captured, analyzed, and turned into business insight. These organizations are using analytics features like dashboards, advanced visualization, data warehousing, and other technologies to achieve their strategic business objectives.
Many companies are taking a hybrid cloud approach to data analysis. Leveraging a hybrid cloud environment as part of a big data analytics strategy enables businesses to take advantage of cloud elasticity. This allows organizations to process data across clusters of computers, enabling analysis to occur across multiple cloud compute environments. As organizations’ need for more compute power grows, the cloud can scale with their requirements. Cloud-based business analytics capabilities enable organizations to make smarter decisions that better address real-time business imperatives.

Analytics capabilities are moving beyond the traditional business intelligence, and forward-leaning organizations are analyzing data in new ways to distance themselves from the competition. Analytics is enabling businesses to align the right customers with the right solutions, identify customer patterns of behavior, and quickly resolve customer service issues by correlating and analyzing a variety of data.
– See more at: https://data-informed.com/new-approaches-for-new-big-data-insights/?utm_content=16304271&utm_medium=social&utm_source=twitter#sthash.TF7nPglQ.dpuf

by Melvin Greer
by Melvin Greer
by Melvin Greer

Business Intelligence has matured as a core competency necessary to sustain competitive advantage. Organizations of every size and industry are generating valuable data with each interaction, and that data can be captured, analyzed, and turned into business insight. These organizations are using analytics features like dashboards, advanced visualization, datawarehousing, and other technologies to achieve their strategic business objectives.

Many companies are taking a hybrid cloud approach to data analysis. Leveraging a hybrid cloud environment as part of a big data analytics strategy enables businesses to take advantage of cloud elasticity. This allows organizations to process data across clusters of computers, enabling analysis to occur across multiple cloud compute environments. As organizations’ need for more compute power grows, the cloud can scale with their requirements. Cloud-based business analytics capabilities enable organizations to make smarter decisions that better address real-time business imperatives.
Analytics capabilities are moving beyond the traditional business intelligence, and forward-leaning organizations are analyzing data in new ways to distance themselves from the competition. Analytics
is enabling businesses to align the right customers with the right solutions, identify customer patterns of behavior, and quickly resolve customer service issues by correlating and analyzing a variety of data.

The Analytics Toolbox

Descriptive analytics, used to explain what has happened and what is happening now, offers organizations a context-relevant view of the business with discovery, visualization, and interaction capabilities. This enables businesses to examine critical performance metrics to understand business impact, evaluate business processes, and drill down into data to get a single view of the past and the present. Bringing together structured and unstructured data from across the enterprise, descriptive analysis provides a consistent view of key business metrics in real time. It shows the “hard to see” trends and patterns through data dashboards, reports, and visualizations that not only detail what is happening, but also begin to diagnose why. Descriptive analytics provides insight that details the reasons behind the results.

Diagnostic analytics, which explains why things happened, is critical to improving business operations and processes. Diagnostic analytics starts during the descriptive analytics phase and gets into root-cause analysis and data discovery. Exploration into disparate data coming from many different sources feeds interactive visualizations that can uncover patterns and correlations that drive business-specific predictive models. Businesses can use these correlations and relationships to predict and plan for the future by identifying key factors that directly and indirectly affect performance. The insights gained provide a deeper understanding of why the business is performing the way it is. Diagnostic analytics reveals success factors that drive future growth.

Predictive analytics, which uses data mining and descriptive and diagnostic analytics along with predictive modeling to describe the probability of future business events, finds patterns in historical and real-time data to anticipate what is ahead, and identifies business risks and opportunities. Using predictive models, statistical analysis, data mining, real-time scoring, and a range of advanced algorithms and techniques provides organizations the ability to analyze business trends and relationships in current and historical data to forecast future business results. Predictive analytics helps organizations make better-informed decisions based not only on what has happened, but also on what is most likely to happen in the future.

Prescriptive analytics uses predictive models and optimization techniques to recommend reasonable courses of action and shows the expected outcome of each. Organizations make more informed business decisions in real time by evaluating different ways to move forward, with an understanding of the consequences of each option. Using “what if” scenarios, predictive models, rules, and decision logic enhances decision making by evaluating a variety of viable options and their likely outcomes. Organizations learn to take advantage of an opportunity or mitigate a future risk by understanding the implications of their actions. Prescriptive analytics drives organizations’ confidence in the ability to make the right decisions to meet strategic business goals, improve customer engagement, lower risk associated with threats and fraud, and improve business processes.

Using Cognitive Analytics

Machine learning and natural language processing have moved out of research labs to become a business differentiator – fusing the benefits of internet speed, cloud scale, and adaptive business processes to drive insights that aid real-time business decision making. Cognitive analytics is the application of cognitive computing technologies to enhance human decision making. Organizations improve the ability to sense and respond by applying cognitive analytics to harness the power of the big data. Cognitive analytics assists in the processing and understanding of big data in real time, in the face of the ever-increasing volumes of data and the endless amount of data fluctuations in form, structure, and quality. Cognitive analytics can extract content, embed it into semantic models, evaluate hypotheses, and interpret evidence, providing potential insights and then continuously improving them.

Business intelligence and analytics tools are the enabling technologies that provide information, knowledge, and insights to organizations assisting them to make better decisions. It helps organizations understand where money is being spent and the measurable value they are realizing from that spend. The use of analytics has surged as smart organizations harness the power of big data to improve decision making and efficiency, and the elasticity of a hybrid cloud computing environment can ensure that these organizations’ ability to manage, analyze, and interpret data grows along with the amount of data they collect. To succeed in today’s competitive market, business leaders must be able to turn data into business insights for sustained business growth, and the right computing environment is a key element to success.
Melvin Greer is Managing Director of the Greer Institute for Leadership and Innovation, focused on research and deployment of his 21st Century Leadership Model. With over 29 years of systems and software engineering experience, he is a recognized expert in Service Oriented Architecture, Cloud Computing and Predictive Analytics. He functions as a principal investigator in advanced research studies, including Nanotechnology, Synthetic Biology and Gamification. He significantly advances the body of knowledge in basic research and critical, highly advanced engineering and scientific disciplines. Mr. Greer is a Certified Enterprise Architect, the Steering Committee Chair of the Cloud Standards Customer Council and a member of the U.S. National Academy of Science.

by Melvin Greer

( This content is being syndicated through multiple channels. The opinions expressed are solely those of the author and do not represent the views of GovCloud Network, GovCloud Network Partners or any other corporation or organization.)

Cloud Musings

( Thank you. If you enjoyed this article, get free updates by email or RSS – © Copyright Kevin L. Jackson 2015)

Follow me at https://Twitter.com/Kevin_Jackson
Posted in

G C Network